Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Acta Pharmaceutica Sinica B ; (6): 3093-3105, 2023.
Article in English | WPRIM | ID: wpr-982892

ABSTRACT

Deficiency of natural killer (NK) cells shows a significant impact on tumor progression and failure of immunotherapy. It is highly desirable to boost NK cell immunity by upregulating active receptors and relieving the immunosuppressive tumor microenvironment. Unfortunately, mobilization of NK cells is hampered by poor accumulation and short retention of drugs in tumors, thus declining antitumor efficiency. Herein, we develop an acid-switchable nanoparticle with self-adaptive aggregation property for co-delivering galunisertib and interleukin 15 (IL-15). The nanoparticles induce morphology switch by a decomposition-metal coordination cascade reaction, which provides a new methodology to trigger aggregation. It shows self-adaptive size-enlargement upon acidity, thus improving drug retention in tumor to over 120 h. The diameter of agglomerates is increased and drug release is effectively promoted following reduced pH values. The nanoparticles activate both NK cell and CD8+ T cell immunity in vivo. It significantly suppresses CT26 tumor in immune-deficient BALB/c mice, and the efficiency is further improved in immunocompetent mice, indicating that the nanoparticles can not only boost innate NK cell immunity but also adaptive T cell immunity. The approach reported here provides an innovative strategy to improve drug retention in tumors, which will enhance cancer immunotherapy by boosting NK cells.

2.
Acta Pharmaceutica Sinica B ; (6): 1348-1357, 2023.
Article in English | WPRIM | ID: wpr-982809

ABSTRACT

Messenger RNA (mRNA) has drawn much attention in the medical field. Through various treatment approaches including protein replacement therapies, gene editing, and cell engineering, mRNA is becoming a potential therapeutic strategy for cancers. However, delivery of mRNA into targeted organs and cells can be challenging due to the unstable nature of its naked form and the low cellular uptake. Therefore, in addition to mRNA modification, efforts have been devoted to developing nanoparticles for mRNA delivery. In this review, we introduce four categories of nanoparticle platform systems: lipid, polymer, lipid-polymer hybrid, and protein/peptide-mediated nanoparticles, together with their roles in facilitating mRNA-based cancer immunotherapies. We also highlight promising treatment regimens and their clinical translation.

3.
China Tropical Medicine ; (12): 191-2023.
Article in Chinese | WPRIM | ID: wpr-979615

ABSTRACT

@#The T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) is an inhibitory receptor mainly expressed on active T-cells, or natural killer cells (NK cells) that activate negative stimulus signals in immune cells by combining with multiple ligands on the surface of target cells including tumor cells and infected cells. TIGIT plays an important regulatory role in the immune pathogenesis of tumors, viral infections and various autoimmune diseases by inhibiting the over activation of cells and the over secretion of proinflammatory cytokines. Recent researches show that TIGIT is highly expressed in T cells and NK cells of cancer patients, and is related to disease progression and poor clinical prognosis. Researchers try to enhance the activity of T cells or NK cells by blocking the binding of TIGIT and its ligand for therapeutic intervention. At present, there have been many reports about the use of anti-TIGIT monoclonal antibody treatment in different mouse tumor models leading to tumor regression, TIGIT has received extensive attention in cancer immunotherapy as a promising target for next generation cancer immunotherapy. Several clinical trials are currently evaluating the efficacy of anti-TIGIT monoclonal antibodies (mAbs) in patients with several cancers. The most advanced candidate, tiragolumab, has exhibited remarkable efficacy in programmed cell death ligand 1 (PD-L1)-positive non-small cell lung carcinoma (NSCLC) patients in phase Ⅱ clinical trials, in combination with PD-L1 blockade. However, the specific mechanism of TIGIT blockade remains to be fully elucidated.

4.
Cancer Research on Prevention and Treatment ; (12): 1174-1179, 2023.
Article in Chinese | WPRIM | ID: wpr-1003796

ABSTRACT

Monoclonal antibody drugs that inhibit programmed death 1 (PD-1) or programmed death ligand 1 (PD-L1) have been widely used in esophageal cancer (EC) and yielded significant therapeutic responses. However, only a few patients obtain lasting clinical benefits due to primary or acquired drug resistance, and new treatment schemes are urgently needed. The tumor immune microenvironment is the main factor that affects patients' response to immunosuppressive agents. This article will discuss the role of immunosuppressive cells and non-cellular components in the immune process to provide ideas for the next research direction of EC.

5.
Acta Pharmaceutica Sinica B ; (6): 879-896, 2023.
Article in English | WPRIM | ID: wpr-971735

ABSTRACT

Immunotherapy combined with effective therapeutics such as chemotherapy and photodynamic therapy have been shown to be a successful strategy to activate anti-tumor immune responses for improved anticancer treatment. However, developing multifunctional biodegradable, biocompatible, low-toxic but highly efficient, and clinically available transformed nano-immunostimulants remains a challenge and is in great demand. Herein, we report and design of a novel carrier-free photo-chemotherapeutic nano-prodrug COS-BA/Ce6 NPs by combining three multifunctional components-a self-assembled natural small molecule betulinic acid (BA), a water-soluble chitosan oligosaccharide (COS), and a low toxic photosensitizer chlorin e6 (Ce6)-to augment the antitumor efficacy of the immune adjuvant anti-PD-L1-mediated cancer immunotherapy. We show that the designed nanodrugs harbored a smart and distinctive "dormancy" characteristic in chemotherapeutic effect with desired lower cytotoxicity, and multiple favorable therapeutic features including improved 1O2 generation induced by the reduced energy gap of Ce6, pH-responsiveness, good biodegradability, and biocompatibility, ensuring a highly efficient, synergistic photochemotherapy. Moreover, when combined with anti-PD-L1 therapy, both nano-coassembly based chemotherapy and chemotherapy/photodynamic therapy (PDT) could effectively activate antitumor immunity when treating primary or distant tumors, opening up potentially attractive possibilities for clinical immunotherapy.

6.
Acta Pharmaceutica Sinica ; (12): 122-133, 2022.
Article in Chinese | WPRIM | ID: wpr-913177

ABSTRACT

Natural killer (NK) cells, as an essential part of innate immunity, can directly identify and kill tumor cells after being activated by the synergistic action of surface inhibitory receptors and activated receptors. It can secrete cytokines to recruit dendritic cells (DCs), induce DCs maturation and enhance adaptive immune response. It can target cancer stem cells (CSCs) and circulating tumor cells (CTCs) to inhibit cancer metastasis. NK cells have a unique inflammatory tendency, which can respond to cytokines and chemokines released from tumor sites and migrate to tumor sites, making them occupy an important advantage in cancer targeted therapy. The research on cancer targeted therapy of NK cells as drug delivery carriers, NK cell membrane-coated biomimetic nanoparticles, and NK cell extracellular vesicles (NKEVs) has attracted more and more attention. The article will focus on the mechanism of NK cells inhibiting cancer, and summarize the research progress of cancer targeted therapy of NK cells.

7.
Acta Pharmaceutica Sinica ; (12): 2557-2569, 2022.
Article in Chinese | WPRIM | ID: wpr-941496

ABSTRACT

Immunotherapy has completely changed the paradigm of clinical tumor treatment, but immune checkpoint inhibitors still have low objective response rates and are prone to drug resistance for most solid tumors. The immune suppression tumor microenvironment and complicated tumor immune escape mechanisms are key factors that affect the clinical outcome and response rates. Therefore, it is critical to reverse the obstacle of the tumor microenvironment to improve immunotherapy efficacy. The immune suppression caused by the increased level of adenosine in the tumor microenvironment raises the attention of people. Targeting adenosine receptors, especially A2AR, will be an effective strategy to improve immunotherapy efficacy. Targeting the adenosine-A2A pathway can increase immune infiltration, enhance immune cell function, and partially reverse immunotherapy-insensitive "cold tumors" to "hot tumors" to enhance treatment response rates and improve the efficacy of current immunotherapy. At present, many adenosine receptor inhibitors have shown good results in clinical trials, especially in combination with immune checkpoint inhibitors, chemotherapy, and adoptive cell transfer therapeutic drugs, which are expected to be used for tumor immunotherapy to bring new breakthroughs. This article reviews the accumulation mode of adenosine in the tumor microenvironment, the role of A2AR and their regulatory mechanism in immune response, the progress of A2AR inhibitors in clinical trials, potential risks to target A2AR, and the prospects for therapeutic targeting A2AR.

8.
Acta Pharmaceutica Sinica B ; (6): 2845-2858, 2022.
Article in English | WPRIM | ID: wpr-939935

ABSTRACT

PD-1 and PD-L1 antibodies have brought about extraordinary clinical benefits for cancer patients, and their indications are expanding incessantly. Currently, most PD-1/PD-L1 agents are administered intravenously, which may be uncomfortable for some cancer patients. Herein, we develop a novel oral-delivered small molecular, YPD-29B, which specifically targets human PD-L1. Our data suggested that YPD-29B could potently and selectively block the interaction between PD-L1 and PD-1, but did not inhibit any other immune checkpoints. Mechanistically, YPD-29B induced human PD-L1 dimerization and internalization, which subsequently activated T lymphocytes and therefore overcomes immunity tolerance in vitro. YDP-29B was modified as the YPD-30 prodrug to improve druggability. Using humanized mice with human PD-1 xenografts of human PD-L1 knock-in mouse MC38 cancer cells, we demonstrated that YPD-30 exhibited significant antitumor activity and was well tolerated in vivo. Taken together, our results indicate that YPD-30 serves as a promising therapeutic candidate for anti-human PD-L1 cancer immunotherapy.

9.
Frontiers of Medicine ; (4): 322-338, 2022.
Article in English | WPRIM | ID: wpr-939882

ABSTRACT

Immune-based therapies have experienced a pronounced breakthrough in the past decades as they acquired multiple US Food and Drug Administration (FDA) approvals for various indications. To date, six chimeric antigen receptor T cell (CAR-T) therapies have been permitted for the treatment of certain patients with relapsed/refractory hematologic malignancies. However, several clinical trials of solid tumor CAR-T therapies were prematurely terminated, or they reported life-threatening treatment-related damages to healthy tissues. The simultaneous expression of target antigens by healthy organs and tumor cells is partly responsible for such toxicities. Alongside targeting tumor-specific antigens, targeting the aberrantly glycosylated glycoforms of tumor-associated antigens can also minimize the off-tumor effects of CAR-T therapies. Tn, T, and sialyl-Tn antigens have been reported to be involved in tumor progression and metastasis, and their expression results from the dysregulation of a series of glycosyltransferases and the endoplasmic reticulum protein chaperone, Cosmc. Moreover, these glycoforms have been associated with various types of cancers, including prostate, breast, colon, gastric, and lung cancers. Here, we discuss how underglycosylated antigens emerge and then detail the latest advances in the development of CAR-T-based immunotherapies that target some of such antigens.


Subject(s)
Humans , Male , Antigens, Neoplasm/chemistry , Biomarkers, Tumor/metabolism , Glycosylation , Hematologic Neoplasms/drug therapy , Immunotherapy, Adoptive/methods , Neoplasm Recurrence, Local/metabolism , Receptors, Chimeric Antigen , T-Lymphocytes , United States
10.
Acta Pharmaceutica Sinica B ; (6): 353-363, 2022.
Article in English | WPRIM | ID: wpr-929299

ABSTRACT

Nucleic acid drugs are highly applicable for cancer immunotherapy with promising therapeutic effects, while targeting delivery of these drugs to disease lesions remains challenging. Cationic polymeric nanoparticles have paved the way for efficient delivery of nucleic acid drugs, and achieved stimuli-responsive disassembly in tumor microenvironment (TME). However, TME is highly heterogeneous between individuals, and most nanocarriers lack active-control over the release of loaded nucleic acid drugs, which will definitely reduce the therapeutic efficacy. Herein, we have developed a light-controllable charge-reversal nanoparticle (LCCN) with controlled release of polyinosinic-polycytidylic acid [Poly(I:C)] to treat triple negative breast cancer (TNBC) by enhanced photodynamic immunotherapy. The nanoparticles keep suitably positive charge for stable loading of Poly(I:C), while rapidly reverse to negative charge after near-infrared light irradiation to release Poly(I:C). LCCN-Poly(I:C) nanoparticles trigger effective phototoxicity and immunogenic cell death on 4T1 tumor cells, elevate antitumor immune responses and inhibit the growth of primary and abscopal 4T1 tumors in mice. The approach provides a promising strategy for controlled release of various nucleic acid-based immune modulators, which may enhance the efficacy of photodynamic immunotherapy against TNBC.

11.
Acta Pharmaceutica Sinica B ; (6): 107-134, 2022.
Article in English | WPRIM | ID: wpr-929284

ABSTRACT

The immune system is involved in the initiation and progression of cancer. Research on cancer and immunity has contributed to the development of several clinically successful immunotherapies. These immunotherapies often act on a single step of the cancer-immunity cycle. In recent years, the discovery of new nanomaterials has dramatically expanded the functions and potential applications of nanomaterials. In addition to acting as drug-delivery platforms, some nanomaterials can induce the immunogenic cell death (ICD) of cancer cells or regulate the profile and strength of the immune response as immunomodulators. Based on their versatility, nanomaterials may serve as an integrated platform for multiple drugs or therapeutic strategies, simultaneously targeting several steps of the cancer-immunity cycle to enhance the outcome of anticancer immune response. To illustrate the critical roles of nanomaterials in cancer immunotherapies based on cancer-immunity cycle, this review will comprehensively describe the crosstalk between the immune system and cancer, and the current applications of nanomaterials, including drug carriers, ICD inducers, and immunomodulators. Moreover, this review will provide a detailed discussion of the knowledge regarding developing combinational cancer immunotherapies based on the cancer-immunity cycle, hoping to maximize the efficacy of these treatments assisted by nanomaterials.

12.
Rev. invest. clín ; 73(1): 8-16, Jan.-Feb. 2021. tab, graf
Article in English | LILACS | ID: biblio-1289739

ABSTRACT

ABSTRACT Programmed cell death protein 1 (PD-1) and its ligand, programmed death-ligand-1 (PD-L1), play key roles in the suppression of the cytotoxic activity of T cells. PD-L1 is overexpressed on various types of cancer cells, leading to immune evasion. In the past decade, therapeutic antibodies that target the PD-1/PD-L1 axis have been developed to inhibit the immune suppression triggered by these two proteins. At present, five antibodies (two anti-PD-1 and three anti-PD-L1) have received approval by regulatory agencies in the US and Europe. In this work, we aimed to review their clinical applications and adverse effects. Furthermore, using their reported crystal structures, we discuss the similarities and differences between the PD-1/PD-L1 interface and the epitopes that are recognized by the antibodies. Detailed analyses of the contact residues involved in the ligand-receptor and target-antibody interactions have shown partial overlap. Altogether, the data presented here demonstrate that: (1) in contrast to other therapeutic antibodies, anti-PD-1/PD-L1 has a wide range of clinical applications; (2) these targeted therapies are not exempt from adverse effects; and (3) the characterization of the structural domains that are recognized by the antibodies can guide the development of new PD-1- and PD-L1-blocking agents. (REV INVEST CLIN. 2021;73(1):8-16)


Subject(s)
Humans , B7-H1 Antigen/immunology , Programmed Cell Death 1 Receptor/immunology , Immunotherapy/methods , Antibodies/therapeutic use , Neoplasms/therapy
13.
Acta Pharmaceutica Sinica ; (12): 3441-3450, 2021.
Article in Chinese | WPRIM | ID: wpr-906822

ABSTRACT

Outer membrane vesicles (OMVs) are nano-sized spherical vehicles, with a size range between 20-250 nm. OMVs are spontaneously secreted from Gram-negative bacteria and formed by lipid bilayer membranes, comprising multiple parent bacteria-derived components including bacterial antigens, pathogen-associated molecular patterns, proteins and lipids. OMVs have shown multiple potentials for the treatment of various diseases, including cancer therapy and bacterial infection. In this review, the structure, composition and methods for isolating and characterizing of OMVs were introduced. The applications of OMVs for diseases therapy were summarized and future perspectives were discussed.

14.
Acta Pharmaceutica Sinica B ; (6): 3447-3464, 2021.
Article in English | WPRIM | ID: wpr-922807

ABSTRACT

The field of two-dimensional (2D) nanomaterial-based cancer immunotherapy combines research from multiple subdisciplines of material science, nano-chemistry, in particular nano-biological interactions, immunology, and medicinal chemistry. Most importantly, the "biological identity" of nanomaterials governed by bio-molecular corona in terms of bimolecular types, relative abundance, and conformation at the nanomaterial surface is now believed to influence blood circulation time, bio-distribution, immune response, cellular uptake, and intracellular trafficking. A better understanding of nano-bio interactions can improve utilization of 2D nano-architectures for cancer immunotherapy and immunotheranostics, allowing them to be adapted or modified to treat other immune dysregulation syndromes including autoimmune diseases or inflammation, infection, tissue regeneration, and transplantation. The manuscript reviews the biological interactions and immunotherapeutic applications of 2D nanomaterials, including understanding their interactions with biological molecules of the immune system, summarizes and prospects the applications of 2D nanomaterials in cancer immunotherapy.

15.
Acta Pharmaceutica Sinica B ; (6): 3393-3405, 2021.
Article in English | WPRIM | ID: wpr-922803

ABSTRACT

Artificial intelligence (AI) is a general term that refers to the use of a machine to imitate intelligent behavior for performing complex tasks with minimal human intervention, such as machine learning; this technology is revolutionizing and reshaping medicine. AI has considerable potential to perfect health-care systems in areas such as diagnostics, risk analysis, health information administration, lifestyle supervision, and virtual health assistance. In terms of immunotherapy, AI has been applied to the prediction of immunotherapy responses based on immune signatures, medical imaging and histological analysis. These features could also be highly useful in the management of cancer immunotherapy given their ever-increasing performance in improving diagnostic accuracy, optimizing treatment planning, predicting outcomes of care and reducing human resource costs. In this review, we present the details of AI and the current progression and state of the art in employing AI for cancer immunotherapy. Furthermore, we discuss the challenges, opportunities and corresponding strategies in applying the technology for widespread clinical deployment. Finally, we summarize the impact of AI on cancer immunotherapy and provide our perspectives about underlying applications of AI in the future.

16.
Frontiers of Medicine ; (4): 805-828, 2021.
Article in English | WPRIM | ID: wpr-922518

ABSTRACT

Immunotherapy plays a compelling role in cancer treatment and has already made remarkable progress. However, many patients receiving immune checkpoint inhibitors fail to achieve clinical benefits, and the response rates vary among tumor types. New approaches that promote anti-tumor immunity have recently been developed, such as small molecules, bispecific antibodies, chimeric antigen receptor T cell products, and cancer vaccines. Small molecule drugs include agonists and inhibitors that can reach the intracellular or extracellular targets of immune cells participating in innate or adaptive immune pathways. Bispecific antibodies, which bind two different antigens or one antigen with two different epitopes, are of great interest. Chimeric antigen receptor T cell products and cancer vaccines have also been investigated. This review explores the recent progress and challenges of different forms of immunotherapy agents and provides an insight into future immunotherapeutic strategies.


Subject(s)
Humans , Antibodies, Bispecific/therapeutic use , Cancer Vaccines , Immunotherapy , Neoplasms/therapy , Receptors, Chimeric Antigen , T-Lymphocytes
17.
Acta Pharmaceutica Sinica B ; (6): 852-870, 2021.
Article in English | WPRIM | ID: wpr-881157

ABSTRACT

Since the commercialization of the first liposomes used for drug delivery, Doxil/Caelyx® and Myocet®, tremendous progress has been made in understanding interactions between nanomedicines and biological systems. Fundamental work at the interface of engineering and medicine has allowed nanomedicines to deliver therapeutic small molecules and nucleic acids more efficiently. While nanomedicines are used in oncology for immunotherapy or to deliver combinations of cytotoxics, the clinical successes of gene silencing approaches like patisiran lipid complexes (Onpattro®) have paved the way for a variety of therapies beyond cancer. In parallel, the global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has highlighted the potential of mRNA vaccines to develop immunization strategies at unprecedented speed. To rationally design therapeutic and vaccines, chemists, materials scientists, and drug delivery experts need to better understand how nanotechnologies interact with the immune system. This review presents a comprehensive overview of the innate and adaptative immune systems and emphasizes the intricate mechanisms through which nanomedicines interact with these biological functions.

18.
Acta Pharmaceutica Sinica B ; (6): 420-433, 2021.
Article in English | WPRIM | ID: wpr-881145
19.
Protein & Cell ; (12): 240-260, 2021.
Article in English | WPRIM | ID: wpr-880931

ABSTRACT

Metabolic regulation has been proven to play a critical role in T cell antitumor immunity. However, cholesterol metabolism as a key component of this regulation remains largely unexplored. Herein, we found that the low-density lipoprotein receptor (LDLR), which has been previously identified as a transporter for cholesterol, plays a pivotal role in regulating CD8

20.
Protein & Cell ; (12): 426-435, 2021.
Article in English | WPRIM | ID: wpr-880924

ABSTRACT

Although intestinal microbiome have been established as an important biomarker and regulator of cancer development and therapeutic response, less is known about the role of microbiome at other body sites in cancer. Emerging evidence has revealed that the local microbiota make up an important part of the tumor microenvironment across many types of cancer, especially in cancers arising from mucosal sites, including the lung, skin and gastrointestinal tract. The populations of bacteria that reside specifically within tumors have been found to be tumor-type specific, and mechanistic studies have demonstrated that tumor-associated microbiota may directly regulate cancer initiation, progression and responses to chemo- or immuno-therapies. This review aims to provide a comprehensive review of the important literature on the microbiota in the cancerous tissue, and their function and mechanism of action in cancer development and treatment.

SELECTION OF CITATIONS
SEARCH DETAIL